07_Bicycle Model Summary Sheet

Simplified Steady State Vehicle Handling Model – Bicycle Model

Adopted from [1]
\(\delta\)steer angle [rad]
\(u\)forward velocity [m/s]
\(v\)lateral velocity [m/s]
\(V\)velocity vector [m/s]
\(\beta\)vehicle slip angle [rad], the angle between the vehicle centreline and the velocity vector at c.g.
\(r\)yaw velocity [rad/s]
\(R\)radius of turn [m], the distance between the turning centre to c.g.

Assumptions

  • No lateral load transfer
  • No longitudinal load transfer
  • No body rolling and pitching
  • Tyres are in the linear range
  • Constant forward velocity (specified by the user)
  • Steering position is controlled
  • No aerodynamic effects
  • Rigid chassis and no suspension compliance effects

2 DOF – lateral velocity \(v\) and yaw velocity \(r\)
The steer angle \(\delta\) – input, forward velocity \(u\) specified.

Equations of motion

\[ \left\{ \begin{array}{l} \mathrm{mV}(\mathrm{r}+\dot{\beta}) &=\mathrm{Y}_{\beta} \beta+\mathrm{Y}_{\mathrm{r}} \mathrm{r}+\mathrm{Y}_{\delta} \delta &= (C_F + C_R)\beta + \dfrac{1}{V}(aC_F \; – bC_R) r + (-C_F) \delta \\ \mathrm{I}_{\mathrm{z}} \dot{\mathrm{r}} &=\mathrm{N}_{\beta} \beta+\mathrm{N}_{\mathrm{r}} \mathrm{r}+\mathrm{N}_{\delta} \delta &= (a C_F \; – b C_R)\beta + \dfrac{1}{V}(a^2C_F + b^2C_R) r + (-a C_F)\delta \end{array} \right. \]

Damping-in-Sideslip Derivative \(Y_\beta = C_F + C_R <0\)Lateral Force/Yaw Coupling Derivative \(Y_r = \dfrac{1}{V}(aC_F – bC_R) \)Control Force Derivative\(Y_\delta = -C_F >0 \)
Static Directional Stability Derivative\( N_\beta = a C_F – b C_R \)Yaw Damping Derivative \(N_r = \dfrac{1}{V}(a^2C_F + b^2C_R) <0\)Control Moment Derivative \( N_\delta = -a C_F >0 \)
In steady state,
\(\beta\) and \(r\) are constants. \(\dot{\beta} = \dot{r} = 0\)

Steady-state response (\(\dot{\beta} = \dot{r} = 0\))

Response to steer angle \(\delta\) (Control) Response to applied side force \(F_y\) at c.g.Response to applied yaw moment \(N\)
\( \dfrac{1 / R}{\delta} = \dfrac{Y_\beta N_\delta-N_\beta Y_\delta}{VQ} \)\( \dfrac{1 / R}{F_y} = \; – \dfrac{N_\beta}{VQ} \)\( \dfrac{1/R}{N} = \dfrac{Y_\beta}{VQ} \)
\( \dfrac{r}{\delta} = V \dfrac{1/R}{\delta} = \dfrac{Y_\beta N_\delta – N_\beta Y_\delta}{Q} \)\( \dfrac{r}{F_y} = \; – \dfrac{N_\beta}{Q}\)\( \dfrac{r}{N} = \dfrac{Y_\beta}{Q} \)
\( \dfrac{V^2/R}{\delta} = \dfrac{V( Y_\beta N_\delta – N_\beta Y_\delta )}{Q} \)\(\dfrac{V^2/R}{F_y} = \; – \dfrac{VN_\beta}{Q}\)\( \dfrac{V^2/R}{N} = \dfrac{VY_\beta}{Q}\)
\( \dfrac{\beta}{\delta} = \dfrac{Y_\delta N_r – N_\delta (Y_r – mV) }{Q}\)\( \dfrac{\beta}{F_y} = \dfrac{N_r}{Q}\)\( \dfrac{\beta}{N} = \; – \dfrac{Y_r – mV}{Q}\)
where \(Q = N_\beta Y_r \; – N_\beta mV \; – Y_\beta N_r \)
path curvature \(1/R\)
yaw angle \(r\)
lateral acceleration \(V^2/R\)
vehicle slip angle \(\beta\)

Distribution of static weight

\[ \dfrac{W_f}{W_r} = \dfrac{b}{a} = \dfrac{Y_f}{Y_r} \] where \(W\) is static weight carried by each axle and \(Y\) is lateral tyre force at each axle

Ackermann steer angle

\[\delta_{Acker} = \dfrac{l}{R} \] the geometric steer angle required for a vehicle to follow a turn radius of \(R\) at low speed.
Neutral steer – even when lateral acceleration is present, the car follows the path defined by the Ackermann steer angle.

General steer angle equation \[ \begin{array}{l} \begin{align} \delta &= \delta_{Acker} + ( -\alpha_F + \alpha_R) \\ &= \dfrac{l}{R} + ( -\alpha_F + \alpha_R) \\ &= \dfrac{l}{R} + \dfrac{lKV^2}{R} \end{align} \end{array} \]

Understeer/Oversteer

Static directional stability \(N_\beta = a C_F – b C_R \)Stability factor \(K = \dfrac{m N_\beta}{l (N_\beta Y_\delta – Y_\beta N_\delta)}\)Static margin \(\text{SM}= \dfrac{d-a}{l}\)
Understeer\( N_\beta >0 \)\( K >0 \)\(\text{SM}>0\), \(\text{NSP}\) situates to the rear of c.g.
Neutral steer\( N_\beta =0 \)\( K =0 \)\(\text{SM}=0\)
Oversteer\( N_\beta <0 \)\( K <0 \)\(\text{SM}<0\)

For oversteer, the critical speed \(V_{crit} = \sqrt{-\dfrac{1}{K}}\), and at the speed \(Q = 0 \) and responses diverge.
For understeer, characteristic speed \(V_{char} = \sqrt{\dfrac{1}{K}}\)

Reference

[1] W. Milliken and D. Milliken, Race Car Vehicle Dynamics.